
BG/L Workshop, Aug. 2002

Blue Gene/L: Applications and 
Tracing 

Maciej Brodowicz
Sharon Brunett 

Caltech



BG/L Workshop, Aug. 2002

Magnetic Hydro Dynamic (MHD) 
Code Overview 

• Parallel MHD fluid code solves equations of 
hydrodynamics and resistive Maxwell’s equations
– Part of larger application which computes dynamic 

responses to strong shock waves impinging on target 
materials

– Fortran 90 + MPI
– MPI Cartesian communicators
– Nearest neighbor comms use non blocking send/recv
– MPI Allreduce for calculating stable time steps



BG/L Workshop, Aug. 2002

MHD Parallel Implementation

• Physical domain decomposed into regular domains 
assigned to processors
– Extra cells surround domain, yielding overlap region 

between neighboring subdomains
– Nearest neighbor comms exchange data in overlapping 

regions 
– Global reduction of minimum timestep at the start of each 

timestep



BG/L Workshop, Aug. 2002

MHD Trace Summary 

• Blute[convert,merge] used to post process input to 
BG/L network simulator 

• 100 iteration runs, 16 - 512 CPUs using blsim2.0
– 161 MB merged trace.ute file from 256 CPU 
– Blfakemain statistics on 256 way blute input file

• 768,000 simulated MPI Isend/Irecv events
• Min msg size = 320 bytes, max = 25600 bytes, avg = 

1720 bytes
• 8x8x4 torus => 2.83 hops / pnt. 2 pnt. message
• 4x8x8 torus => 1.63 hops/ pnt. 2 pnt message



BG/L Workshop, Aug. 2002

MHD Summary

• Traces through network simulator show code is CPU 
bound
– Increasing problem size doesn’t increase comms to 

computation ratio
• Good for production runs, bad for network stress testing! 

• MHD’s good scaling, simple MPI calls and CPU 
bound characteristics make it a good candidate for 
node simulator tracing
– Anticipating progressively useful node simulator binaries  

from IBM in Sept.
• Functionality verification, review assembly output, cache 

level statistics for main MHD loops



BG/L Workshop, Aug. 2002

Quantum Monte Carlo (QMC) 
Application

• Computational method for potentially allowing 
material properties to be calculated to within chemical 
accuracy
– Code base from ASCI/ASAP Material Properties group at 

Caltech, led by Bill Goddard
– Manager/worker paradigm

• Two computationally intensive phases with statistics 
gathering MPI_Reduce done on manager node

– Efficient parallel algorithm being developed to efficiently 
divide calculation among available processors and minimize 
global communication 



BG/L Workshop, Aug. 2002

QMC Tracing Status 

• Ported to SP2 (blue pacific) and SP3 (frost) at 
LLNL
– C++ code, works with native and GNU compilers

• Trace files (raw and ute) completed for 128 
way runs
– Blfakemain post processing of merged traces 

causes core dumps



BG/L Workshop, Aug. 2002

QMC Summary

• Network traces for QMC use  M. Brodowicz’s trace 
analysis scripts
– MPI_Reduce and MPI_Iprobe counts were trivial, compared 

to computational demands

• QMC test kernel for distributing workload to many 
workers with smaller memory working on SP2
– Ready to test on IBM’s node simulator



BG/L Workshop, Aug. 2002

Gyrokinetic Toroidal Code (GTC) 
Overview

– GTC calculates micro-turbulence in a tokamak using kinetic 
equations in a collisionless regime 

• Developed at Princeton Plasma Physics Lab. by 
Stephane Ethier

• Sources are Fortran 90 + MPI
– Torus geometry surrounded by twisting magnetic field lines 

• Grid follows magnetic field lines in real space
• Particles move around the torus, along magnetic field 

lines, at very high velocities yet have a much slower 
motion in the perpendicular direction

• One dimensional domain decomposition in toroidal 
direction



BG/L Workshop, Aug. 2002

GTC Implementation and Tracing

• Particle in Cell (PIC) approach
• Particles cross boundaries of two domains via 

MPI_sendrecv nearest neighbor calls
• Highly compute bound except for synchronizing 

MPI_Allreduce calls
– 95% compute bound according to BLUTE2.1 traces



BG/L Workshop, Aug. 2002

GTC Tracing Summary

• Production code not a good network 
stress test
– 64 way GTC run yields 832,128 MPI_Gather events and 280 

Gcycles burst per node
– 96 way GTC run for fixed problem size becomes less 

interesting
• 94,080 MPI_Gather events and 930 Gcycles burst per 

node

• Eliminating turbulence calculations and electric field 
fluctuations yields better network stress test
– 15% comms overhead on 96 way run



BG/L Workshop, Aug. 2002

GTC Event Count and Message Sizes 
64 CPUs 200 Iterations

22,146,817193,211,951192,993,517Avg. [bytes]

30,849,074357,849,187357,552,832Max [bytes]

22,75825,729,32425,779,005Min [bytes]

3,265359,07457,753Count

MPI_BcastMPI_SendrecvMPI_Allreduce



BG/L Workshop, Aug. 2002

3-D Adaptive Mesh Refinement
(AMR3D)

Fluid dynamics code based on two major software
components:

– Richtmyer-Meshkov shock simulation with Cartesian meshes 
written by Ravi Samtaney (Caltech, Princeton) – Fortran

– GrACE data management library designed by Manish Parashar 
(Rutgers University) – C++. Grace supports mesh generation and 
removal, automatic load balancing and runtime statistics gathering.

AMR3D’s behavior is highly dynamic with respect to CPU
utilization and memory usage. Communication patterns
include:

– Point-to-point nearest-neighbor updates of boundary regions
– Global reductions to determine the timestep value to be used 

throughout the next iteration
– Collective and point-to-point message bursts generated by grid 

recomposition events



BG/L Workshop, Aug. 2002

AMR3D: Communication Profile
50 time steps on 16 processors, initial grid size 2048x32x32

0

200

400

600

800

1000

1200

0 2.50E+11 5.00E+11 7.50E+11 1.00E+12 1.25E+12 1.50E+12

CPU cycles

C
o

u
n

t

Point-to-point Collective



BG/L Workshop, Aug. 2002

AMR3D: Message Size Distribution

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 32 256 2K 16K 128K 1M 8M

Message size [bytes]

C
o

u
n

t

Point-to-point Collective



BG/L Workshop, Aug. 2002

Lennard-Jones, Spatial Decomposition
(LJS)

Short-range molecular dynamics code written in Fortran by 
Steve Plimpton (SNL):

– Simulates Newtonian interactions in large groups of atoms
– Each processor keeps track of the positions and movements of 

atoms in its 3-D “box”
– Point-to-point messages are exchanged:

• At the end of each timestep to acquire atom positions from 
nearby “boxes” (for computation of forces)

• Every few timesteps to reassign positions of atoms due to 
movement (binning)

– Collective calls used exclusively during setup phase and 
computation of the final statistical information



BG/L Workshop, Aug. 2002

LJS: Communication Profile
50 time steps on 16 processors, problem size 1603 (16 mil. atoms)

0

100

200

300

400

500

600

700

800

900

1000

0 1.00E+11 2.00E+11 3.00E+11 4.00E+11 5.00E+11

CPU cycles

C
o

u
n

t

Point-to-point Collective



BG/L Workshop, Aug. 2002

LJS: Message Size Distribution

0

1000

2000

3000

4000

5000

6000

7000

4 32 256 2K 16K 128K 1M

Message size [bytes]

C
o

u
n

t

Point-to-point Collective



BG/L Workshop, Aug. 2002

Recursive Coordinate Bisection
(RCB)

Domain decomposition kernel written in C by Steve Plimpton 
(SNL):

– Recursively subdivides sets of 3-D blocks along their longest edge 
to evenly distribute the cumulative weight of material points (“dots”) 
across processors

– Generates random and lattice-aligned test groups of dots
– Weight assignment to dots is optional (distribution by count only)
– Possible to simulate random movements of particles
– Communication bound

• Reductions and barriers over subdomains with specifically 
generated communicators

• Dots propagated through point-to-point calls



BG/L Workshop, Aug. 2002

RCB: Communication Profile
50 time steps on 16 processors, 32 million particles

0

200

400

600

800

1000

1200

1400

0 1.00E+11 2.00E+11 3.00E+11 4.00E+11 5.00E+11 6.00E+11 7.00E+11 8.00E+11 9.00E+11

CPU cycles

C
o

u
n

t

Point-to-point Collective



BG/L Workshop, Aug. 2002

RCB: Message Size Distribution

0

5000

10000

15000

20000

25000

4 64 1K 16K 256K 4M 64M

Message size [bytes]

C
o

u
n

t

Point-to-point Collective



BG/L Workshop, Aug. 2002

Burst time distribution

0

5000

10000

15000

20000

25000

30000

35000

100 1000 10000 100000 1.00E+06 1.00E+07 1.00E+08 1.00E+09 1.00E+10

Burst time [cycles]

C
o

u
n

t

AMR3D LJS RCB



BG/L Workshop, Aug. 2002

Near Term Plans

• Create small computational kernels for initialization 
and statistics gathering in QMC
– Preparing test runs for IBM to run through the VHDL 

simulator

• Complete BLUTE tracing for more communications 
intensive GTC runs and MPI stress tests

• Prepare MHD kernel for BG/L node simulator
• Collect and analyze ETF traces of the remaining 

applications
• Derive parameters for statistical simulator



BG/L Workshop, Aug. 2002

Designing a Trace Tool: Desired 
Characteristics

• Low overhead (both temporal and spatial)
• Freely modifiable and expandable
• Contents of trace files always interpretable by 

provided tools
• Portable
• Transparent buffering and handling of potentially 

large amount of data
• Optimized for sequential access, but capable of fast 

advance through sections of trace file
• Multiprocessor support (trace merging, event 

matching and ordering)



BG/L Workshop, Aug. 2002

Expandable Trace Format

Structure:
• Trace is a sequence of files
• Each file includes header, followed by any number of 

dictionaries and data frames, and a trailer
– Header describes low-level parameters of trace (endianness, 

elementary component sizes, version) and, together with 
trailer, multi-file continuations

– Dictionaries (token tables) contain definitions of symbols 
added by the user

– Frames are sequences of tokens interleaved with actual 
trace data



BG/L Workshop, Aug. 2002

ETF: Features
– User-defined token and count field sizes
– Big- and little-endian platform support
– Data types

• Primitives (integers, FP numbers, strings)
• Compound (fixed and variable length arrays, records)

– Namespaces
– Hierarchical symbol definitions
– Dictionary generation from human-readable strings
– Event timers

• TSC register on Intel x86 processors
• MPI_Wtime
• gettimeofday()
• Other?

– Written in C++ (templates for improved performance)



BG/L Workshop, Aug. 2002

ETF: MPI Support

• All point-to-point communication (MPI-1)
• All collective communication (MPI-1)
• Non-blocking request tracking
• Communicator creation and destruction
• Datatype decoding (requires MPI-2 support)
• Languages: C, Fortran
• Easy instrumentation of applications



BG/L Workshop, Aug. 2002

MPI Tracing Issues

• Extraction of exact initiation and completion 
times for non-blocking calls

• Notion of message size in collective 
communication (e.g., MPI_Barrier vs. 
MPI_Bcast vs. MPI_Gather)

• Trace interpretation
• Portability of Fortran component



BG/L Workshop, Aug. 2002

ETF: Memory Reference Tracing

• Tracking of statically and dynamically allocated 
arrays (identifiers, element sizes, dimensions)

• Tracking of scalar variables
• Read and write accesses to individual scalars and 

array elements as well as contiguous vectors of 
elements

• Function calls
• Program execution phases
But:
• Difficult instrumentation (by hand only)



BG/L Workshop, Aug. 2002

Future Work

• Trace parsing library
• Trace dump tool (equivalent of bllsute) with basic 

filtering capabilities
• Trace merge utility (with global event ordering)
• Further optimization of tracer code
• Better customization of MPI traces
• Statistical analysis tool (min/max, counts, histograms)
• Optional: trace conversion utility (e.g., ETF-BLUTE)
• Optional: trace compaction tool


